

Eight-Channel Fixed Filter and Amplifier Signal Conditioning Plug-on VT1508A

User's Manual

The VT1508A manual also applies to Agilent/HP E1413Bs as Agilent/HP E1413 Option 18.

Enclosed is the User's Manual for the VT1508A Signal Conditioning Plug-on. Insert this manual in your VT1413C or Agilent/HP E1313 manual behind the "Signal Conditioning Plug-ons" divider.

Copyright © VXI Technology, Inc., 2003

VT1508A Eight-Channel Fixed Filter and Amplifier Signal Conditioning Plug-on

Introduction

The VT1508A is a Signal Conditioning Plug-on that provides eight fixed low-pass filters with a 3 dB cutoff frequency of 7 Hz and eight amplifiers with gain of 16. Also provided is input over-voltage protection and open transducer detection on each channel.

About this Manual

This manual shows you how to control the Signal Conditioning Plug-on (SCP) using SCPI commands as well as Register-Based commands, and explains the capabilities of this SCP. Finally, it covers specifications for this SCP. The contents of this manual are:

•	Installation	. 3
•	Identifying the Plug-on	. 3
•	Connecting To The Terminal Module	. 4
•	Programming With SCPI Commands	. 6
•	Programming With Register Commands	. 8
•	Specifications	10

Installation

Installation for this Plug-on is common to several others and is covered in Chapters 1 and 2 of your VT1413C or Agilent/HP E1313 manual.

Identifying the Plug-on

You'll find the VXI Technology part number on the connector side of the SCP to the left of the serial number bar code. For the VT1508A, the part number is : VT1508A.

Connecting To The Terminal Module

This section shows how to make connections to the Terminal Module.

The SCP connections for the Terminal Modules are shown on the stick-on labels that came with the SCP. Use the appropriate label for the type of Terminal Module you have. The connections and appropriate stickers are as follows:

- For VT1413C and above Terminal Modules, use stickers for VT1508A SCPs. The connections are shown in Figure 1.
- For Agilent/HP E1313 Terminal Moduless, use stickers for VT1508A SCPs. The connections are shown in Figures 2 and 3.
- For Agilent/HP E1413B and below Terminal Modules, use stickers for Agilent/HP E1413 Option 18 SCPs. The connections are shown in Figure 4.

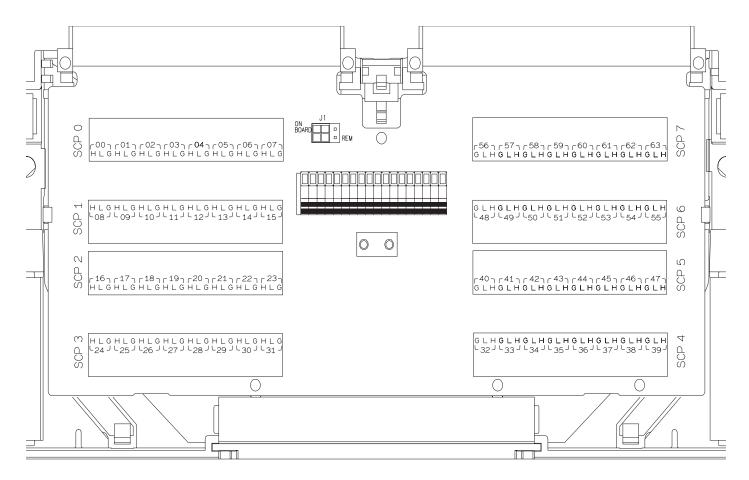
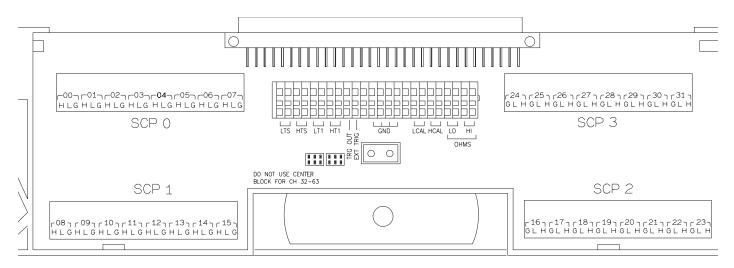




Figure 1 VT1508A C-Size Terminal Module Connections

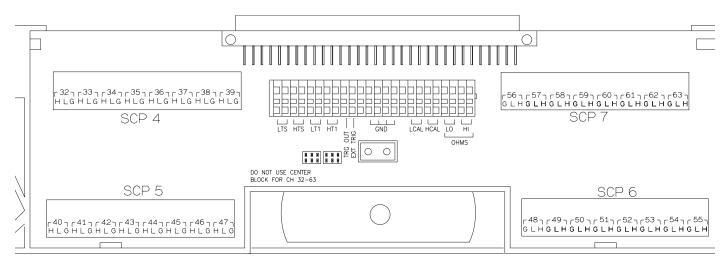
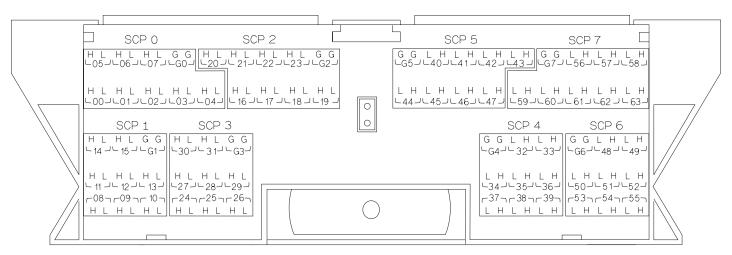
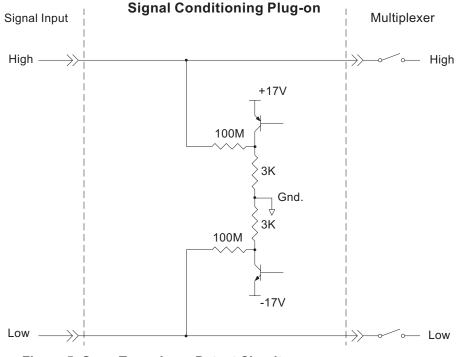



Figure 3 VT1508A B-size Terminal Module Connections (Ch 32-63)

Programming With SCPI Commands

	The SCPI commands shown here are covered in Chapters 3 and 5 of your VT1413C or Agilent/HP E1313 manual. This section will relate those commands to the parameter values which are specific to this Plug-on.			
Checking the ID of the SCP	To verify the SCP type(s) installed on the VT1413C or SYSTem:CTYPe? (@ <channel>) command.</channel>	Agilent/HP E1313 use the		
	• The <i>channel</i> parameter specifies a single channel in covered by the SCP of interest. The first channel nu SCP positions are; 0,8,16,24,32,40,48 and 56.	the channel range mber for each of the eight		
	The value returned for the SCP in an Agilent/HP E1413B is: HEWLETT-PACKARD,E1413 Opt 18 8-Channel Fixed Gain-Filter SCP,0,0			
	The value returned for the SCP in a VT1413C or Agilent/HP E1313A is: HEWLETT-PACKARD,E1508 8-Channel Fixed Gain-Filter SCP,0,0			
	To determine the type of SCP installed on channels 0 through 7 send			
	SYST:CTYP? (@100) enter statement here	query SCP type @ ch 0		
Querying the Filter Cutoff Frequency	While the VT1508A does not provide programmable of frequency can be queried. The response to this query will channel for its cutoff frequency use the INPut:FILTe (@ <channel>) command. The INP:FILT:FREQ? community set for the channel specified.</channel>	l always be 7. To query any r[:LPASs]:FREQuency?		
	• The <i>channel</i> parameter must specify a single channel	el.		
	To query the cutoff frequency of channel 6 send			
	INP:FILT:FREQ? (@106) enter statement here	query channel 6		
Querying the Filter State	While the VT1508A does not allow controlling whether disabled, this state can be queried. The response to this query any channel to determine if it is enable INPut:FILTer[:LPASs][:STATe]? (@ <channel>) co command returns a 0 if the channel is OFF or a 1 if the</channel>	query will always be 1. To ed or disabled use the ommand. The INP:FILT?		

• The *channel* parameter must specify a single channel.


To query the filter state of channel 2 send


	INP:FILT?	(@102)	query channel 2
	enter stateme	nt here	
Querying the		1	xed gain, the channel gain can be queried.
Channel Gain The response to this query will always be 16. To query any channel to dete gain setting use the INPut:GAIN? (@ <i><channel></channel></i>) command. The INF command returns the current gain value for the specified channel.			
	• The channel par	ameter must specify a	a single channel.
	To query the gain s	setting of channel 8 se	end
	INP:GAIN?	(@108)	query channel 8

enter statement here

Transducers

Detecting Open This SCP provides a method to detect open transducers. When Open Transducer Detect (OTD) is enabled, the SCP injects a small current into the HIGH and LOW input of each channel. The polarity of the current pulls the HIGH inputs toward +17 volts and the LOW inputs towards -17 volts. If a transducer is open, measuring that channel will return an over-voltage condition. OTD is available on a per SCP basic. all eight channels of an SCP are enabled or disabled together. See Figure for a simplified schematic diagram of the OTD circuit.

NOTES 1) When OTD is enabled, the inputs have up to $0.2 \ \mu$ A injected into them. If this current will adversely affect your measurement, but you still want to check for open transducers, you can enable OTD, make a single scan, check the CVT for bad measurements, then disable OTD and make your regular measurement scans. The specifications apply only when OTD is off.

2) Allow 5 minutes before checking for open transducers to allow filter capacitors to charge.

To enable or disable Open Transducer Detection, use the DIAGnostic:OTDetect <*enable>*, (@*<ch_list>*) command.

- The enable parameter can specify ON or OFF
- An SCP is addressed when the *ch_list* parameter specifies a channel number contained on the SCP. The first channel on each SCP is:
 0, 8, 16, 24, 32, 40, 48, and 56

To enable Open Transducer Detection on all channels on SCPs 1 and 3:

DIAG:OTD ON, (@100,116)

0 is on SCP 1 and 16 is on SCP3

To disable Open Transducer Detection on all channels on SCPs 1 and 3:

DIAG:OTD OFF, (@100,116)

Register Based Programming

The register-based commands shown here are covered in Appendix D of the VT1413C or Agilent/HP E1313 manual. You should read that section first to become familiar with accessing registers and executing Register-Based Commands. This section will relate those commands to the parameter values which are specific to this Plug-on.

When Register Programming an SCP most communication is through the Signal Conditioning Bus. For that you will use the Register Commands: SCBWRITE <regaddr> <regvalue>

and SCBREAD? <regaddr>

VT1508A	Register	Map
---------	----------	-----

Read (returned value)	Write(<regvalue>)</regvalue>	SCP Register	<regaddr> Value</regaddr>
SCP ID (9010 ₁₆)		Whole SCP Reg 0	00ppp0000002

ppp=Plug-on ccc=SCP channel

In addition you will access bits in the Card Control register to control Open Transducer Detection.

Checking ID of SCPTo query an SCP for its ID value, write the following value to Parameter Register 1:
 $(SCP number) \times 40_{16}$ Then write the opcode for SCBREAD? (080016) to the Command Register. The ID
value will be returned to the Query Response Register.

Detecting OpenOpen Transducer Detection (OTD) is controlled by bits in the Card ControlTransducersRegister. For more information on OTD see Figure 1.

	Card Control Register			ister (Base + 12_{16})		
15	14	14-13	12	11	10-8	7-0
PSI Pwr Reset	FIFO Mode	unused	FIFO Clear	VPPEN	A24 Window	Open Transducer Detect

Writing a one (1) to a bit enables open transducer detect on that signal conditioning module. Writing a zero (0) to a bit disables open transducer detect.

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SCP 7	SCP 6	SCP 5	SCP 4	SCP 3	SCP 2	SCP 1	SCP 0

Specifications

These specifications for the VT1508A reflect the combined performance of the VT1413C or Agilent/HP E1313 and the VT1508A Signal Conditioning Plug-on. These specifications are not to be added to those presented in the VT1413C User's Manual.

General Specifications

Measurement ranges								
DC Volts	± 3.9 mV to ± 1	V FS						
Temperature	Thermistors - (Thermocouples200 to +1700°C Thermistors - (Opt 15 required) -80 to +160°C RTD's - (Opt 15 required) -200 to +850°C						
Resistance	(Opt 15 require	ed) 128 Ohms	to 131 kOhms	FS				
Strain	25,000 µe or li	25,000 μ e or limit of linear range of strain gage						
Maximum input voltage (Normal mode plus common mode)		Operating: <	±16 V peak	Damage level:	>±42 V peak			
Maximum common mode voltage		Operating: <	±16 V peak	Damage level:	>±42 V peak			
Normal mode rejection		(a) 7 Hz -3 dB, (@ 60 Hz >-25 c	lΒ			
Common mode rejection	0 - 60 Hz -100 dB							
Input impedance		100 MOhm ±10% (each differential input to ground)						
Maximum tare cal offset (Maximum tare offset depends on A/D range and SCP gain)				ls on A/D range	and SCP gain)		
			I	T		1		
	A/D range ±V F.Scale	16	4	1	0.25	0.0625		

Measurement accuracy DC Volts

(90 days) 23°C±1°C (with *CAL? done after 1 hr warm up and CAL:ZERO? within 5 min.). If autoranging is ON, add ±0.02% FS to accuracy specifications. For Agilent/HP E1313, multiply Noise Spec. by 1.4.

Gain 16	Range	Linearity	Offset Error	Noise µV	Noise µV*
	±V FS	% of reading	μV (10Hz)	3 sigma	3 sigma
	.0039	0.01	3.8	3.4	2.9
	.0156	0.01	4.2	4.4	3.8
	.0625	0.01	4.9	7.5	6.3
	.25	0.01	8	28	23
	1	0.01	31	113	64

* [SENSe:]FILTer[:LPASs][:STATe] ON (max scan rate - 100 rdgs/sec/channel)

Temperature Coefficients: Gain - 15 ppm/°C. Offset - $(0 - 30^{\circ}C) 0.16 \,\mu V/^{\circ}C$, $(30 - 40^{\circ}C) 0.18 \,\mu V/^{\circ}C$,

(40 - 55°C) 0.39 μV

Measurement accuracy Temperature

(simplified specifications, see temperature accuracy graphs in VT1413C manual for details) (90 days) $23^{\circ}C\pm1^{\circ}C$ (with *CAL? done after 1 hr warm up and CAL:ZERO? within 5 min.). If autoranging is ON, add $\pm 0.02\%$ FS to accuracy specifications.

The temperature accuracy specifications include instrument and firmware linearization errors. The linearization algorithm used is based on the IPTS-68(78) standard transducer curves. Add your transducer accuracy to determine total measurement error.

Thermocouples

Туре Е	A/D Filter	-200 to 0°C	0 to 200°C	200 to 400°C	400 to 800°C
	OFF	1.30°C	0.14°C	0.14°C	0.20°C
 Type EEXtended	A/D Filter	-200 to 0°C	0 to 200°C	200 to 800°C	800 to 1000°C
	OFF	1.80°C	0.30°C	0.20°C	0.35°C
Type J	A/D Filter	-200 to 0°C	0 to 280°C	280 to 600°C	600 to 775°C
	OFF	1.60°C	0.15°C	0.22°C	0.22°C
 Туре К	A/D Filter	-200 to 0°C	0 to 375°C	375 to 800°C	800 to 1400°C
	OFF	2.50°C	0.20°C	0.25°C	0.40°C
Type R	A/D Filter	0 to 100°C	100 to 200°C	200 to 600°C	600 to 1000°C
	OFF	1.80°C	0.90°C	0.70°C	0.60°C

[SENSe:]FILTer[:LPASs][:STATe] ON (max scan rate - 100 rdgs/sec/channel)

Measurement accuracy Temperature (cont.)

(simplified specifications, see temperature accuracy graphs in VT1413C manual for details)

Thermocouples (cont.)

Type S	A/D Filter	0 to 100°C	100 to 200°C	200 to 800°C	800 to 1750°C
	OFF	3.50°C	1.75°C	0.80°C	0.85°C
Туре Т	A/D Filter	-200 to -100°C	-100 to 0°C	0 to 200°C	200 to 400°C
	OFF	1.55°C	0.32°C	0.18°C	0.18°C

5 k Ω Reference Thermistor

A/D Filter	-10 to 65°C	65 to 85°C
OFF	0.012°C	0.013°C

100 Ω Reference RTD

A/D Filter	-125 to 70°C
OFF	0.145°C

100 Ω **RTD**

	A/D Filter	-200 to 75°C	75 to 300°C	300 to 600°C	600 to 970°C
	OFF	0.08°C	0.21°C	0.27°C	0.37°C
2252 Ω Thermistor					
	A/D Filter	0 to 30°C	30 to 70°C	70 to 80°C	80 to 100°C
	OFF	0.006°C	0.013°C	0.010°C	0.014°C
5 k Ω Thermistor					
	A/D Filter	0 to 30°C	30 to 70°C	70 to 85°C	
	OFF	0.012°C	0.014°C	0.019°C	
10 k Ω Thermistor					
	A/D Filter	0 to 30°C	30 to 60°C	60 to 90°C	90 to 115°C
	OFF	0.015°C	0.016°C	0.018°C	0.022°C